The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
常规进行了视频支气管镜检查,以涉嫌癌症,监测COPD患者的肺组织活检以及在重症监护病房中澄清急性呼吸问题。复杂的支气管树中的导航尤其具有挑战性和身体要求,需要医生的长期经验。本文介绍了支气管镜视频中支气管孔的自动分割。由于缺乏易于获取的地面真相分段数据,目前,基于学习的深度方法被阻碍。因此,我们提出了一个由K均值组成的数据驱动管道,然后是基于紧凑的标记的流域算法,该算法能够从给定的深度图像中生成气道实例分割图。通过这种方式,这些传统算法是仅基于Phantom数据集的RGB图像上直接在RGB图像上训练浅CNN的弱监督。我们在两个体内数据集上评估了该模型的概括能力,这些数据集涵盖21个不同的支气管镜上的250帧。我们证明其性能与那些在体内数据中直接训练的模型相当,通过128x128的图像分辨率,对于检测到的气道分割中心的平均误差为11 vs 5像素。我们的定量和定性结果表明,在视频支气管镜检查,幻影数据和弱监督的背景下,使用基于非学习的方法可以获得对气道结构的语义理解。
translated by 谷歌翻译
为了能够在不怀疑的情况下使用人工智能(AI)在医学中,并认识到和评估其日益增长的潜力,在当前和未来的医务人员中,对该主题的基本理解是必要的。在“通过理解的信任”的前提下,我们在德国Ki校园(AI校园)项目框架内开发了创新的在线课程,这是一个自我指导的课程,它教授AI的基础知识进行分析医疗图像数据。主要目标是提供一个学习环境,以充分了解医学图像分析中的AI,以便通过积极的应用经验来克服对该主题的进一步兴趣,并可以克服对其使用的抑制。重点是医疗应用和机器学习的基础。在线课程分为连续的课程,其中包括以解释性视频的形式,以简化和实践练习和/或测验的形式进行的实践练习,以检查学习进度。在课程的第一次跑步中,参与医学生的一项调查用于定量分析我们的研究假设。
translated by 谷歌翻译
最近基于深度学习的医学图像注册方法实现了与传统优化算法在减少的运行时间时具有竞争力的结果。但是,深度神经网络通常需要大量标记的培训数据,并且容易受到培训和测试数据之间的领域变化。尽管基于按键的注册可以减轻典型的强度移位,但由于不同的视野,这些方法仍然遭受几何域移位。作为一种补救措施,在这项工作中,我们提出了一种用于图像注册的几何结构域适应性的新方法,将模型从标记的源调整为未标记的目标域。我们以基于按键的注册模型为基础,将用于几何特征学习的图形卷积与循环信念优化相结合,并提议通过自我增压来减少域的转移。为此,我们将模型嵌入了卑鄙的教师范式中。我们将平均教师扩展到这种情况下,通过1)调整随机增强方案和2)将学习的特征提取与可区分优化相结合。这使我们能够通过对学习学生和时间平均的教师模型的一致预测来指导未标记的目标域中的学习过程。我们评估了在两个具有挑战性的适应方案(dir-lab 4d ct to copd,copd to copd to Learn2Reg)下呼气到肺CT注册的方法。我们的方法一致地将基线模型提高了50%/47%,甚至匹配了对目标数据训练的模型的准确性。源代码可在https://github.com/multimodallearning/registration-da-mean-teacher上获得。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
目前可变形的医学图像登记的方法通常难以满足以下所有标准:多功能适用性,小的计算或培训时间,以及能够估计大变形。此外,用于监督登记培训的端到端网络通常变得过于复杂,难以训练。对于Learn2Reg2021挑战,我们的目标是通过解耦特征学习和几何对齐来解决这些问题。首先,我们介绍了一种新的非常快速准确的优化方法。通过采用离散的位移和耦合的凸优化程序,我们能够强大地应对大变形。借助基于亚当的实例优化,我们实现了非常准确的注册性能,并通过使用正则化,我们获得了光滑和合理的变形字段。其次,对于不同的注册任务来说是多功能的,我们提取手工制作的功能,这些功能是模态和对比度不变,并将它们与来自特定于任务的分段U-Net的语义特征补充。通过我们的结果,我们能够实现整体学习2REG2021挑战的第二名,赢得任务1,并在另外两项任务中赢得任务1。
translated by 谷歌翻译
Wireless Sensor Network (WSN) applications reshape the trend of warehouse monitoring systems allowing them to track and locate massive numbers of logistic entities in real-time. To support the tasks, classic Radio Frequency (RF)-based localization approaches (e.g. triangulation and trilateration) confront challenges due to multi-path fading and signal loss in noisy warehouse environment. In this paper, we investigate machine learning methods using a new grid-based WSN platform called Sensor Floor that can overcome the issues. Sensor Floor consists of 345 nodes installed across the floor of our logistic research hall with dual-band RF and Inertial Measurement Unit (IMU) sensors. Our goal is to localize all logistic entities, for this study we use a mobile robot. We record distributed sensing measurements of Received Signal Strength Indicator (RSSI) and IMU values as the dataset and position tracking from Vicon system as the ground truth. The asynchronous collected data is pre-processed and trained using Random Forest and Convolutional Neural Network (CNN). The CNN model with regularization outperforms the Random Forest in terms of localization accuracy with aproximate 15 cm. Moreover, the CNN architecture can be configured flexibly depending on the scenario in the warehouse. The hardware, software and the CNN architecture of the Sensor Floor are open-source under https://github.com/FLW-TUDO/sensorfloor.
translated by 谷歌翻译
背景:基于学习的深度颈部淋巴结水平(HN_LNL)自动纤维与放射疗法研究和临床治疗计划具有很高的相关性,但在学术文献中仍被研究过。方法:使用35个规划CTS的专家划分的队列用于培训NNU-NEN 3D FULLES/2D-ENEBLEN模型,用于自动分片20不同的HN_LNL。验证是在独立的测试集(n = 20)中进行的。在一项完全盲目的评估中,3位临床专家在与专家创建的轮廓的正面比较中对深度学习自动分类的质量进行了评价。对于10个病例的亚组,将观察者内的变异性与深度学习自动分量性能进行了比较。研究了Autocontour与CT片平面方向的一致性对几何精度和专家评级的影响。结果:与专家创建的轮廓相比,对CT SLICE平面调整的深度学习分割的平均盲目专家评级明显好得多(81.0 vs. 79.6,p <0.001),但没有切片平面的深度学习段的评分明显差。专家创建的轮廓(77.2 vs. 79.6,p <0.001)。深度学习分割的几何准确性与观察者内变异性(平均骰子,0.78 vs. 0.77,p = 0.064)的几何准确性无关,并且在提高水平之间的准确性方面差异(p <0.001)。与CT切片平面方向一致性的临床意义未由几何精度指标(骰子,0.78 vs. 0.78 vs. 0.78,p = 0.572)结论:我们表明可以将NNU-NENE-NET 3D-FULLRES/2D-ENEMELBEND用于HN_LNL高度准确的自动限制仅使用有限的培训数据集,该数据集非常适合在研究环境中在HN_LNL的大规模标准化自动限制。几何准确度指标只是盲人专家评级的不完善的替代品。
translated by 谷歌翻译
人工神经网络(ANNS)尽管具有通用的功能近似能力和实践成功,但仍会遭受灾难性的遗忘。灾难性忘记是指学习新任务时的突然学习。这是一种妨碍持续学习的新兴现象。 ANN的现有通用函数近似定理保证功能近似能力,但不能预测灾难性遗忘。本文介绍了仅使用单变量函数和指数函数的多变量函数的新型通用近似定理。此外,我们介绍了Atlas:基于新定理的新颖Ann建筑。结果表明,地图集是能够保留某些内存和持续学习的通用函数近似器。地图集的记忆是不完善的,在持续学习过程中具有一些脱离靶向的效果,但行为良好且可预测。提供了有效的地图集。进行实验以评估Atlas的功能近似和记忆保留能力。
translated by 谷歌翻译